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It is shown that the recent dualistic theory of  gravitation of  the author can be 
regarded as equivalent to the Nordstr6m theory (1913) supplemented by addi- 
tional field variables. Such a point of  view not only removes certain theoretical 
shortcomings of the Nordstrgm theory, but also clarifies the relationship between 
this theory and the Einstein theory. 

1. INTRODUCTION 

The first theory of gravitation consistent with (1) the conservation of 
momentum and energy, (2) equality of the gravitational and inertial mass 
of an isolated material system, and (3) the restricted principle of relativity 
was the scalar theory of gravitation by Nordstr6m (1913), which can be 
regarded as the forerunner of Einstein's tensor theory of gravitation (1916). 
In fact, Einstein was for some time very much taken with this theory and 
published papers (Einstein, 1913, 1914) on it prior to the advent of his 
general theory in 1915. Einstein and Fokker (1914) first gave a fully covariant 
formulation of Nordstr6m's theory which even today may be regarded as 
the best presentation of it. 

One reason why scientific opinion ultimately turned away from the 
Nordstr6m theory in spite of its simplicity and elegance was the discovery 
in 1919 that light rays are deflected by a strong gravitational field. According 
to the Nordstr6m theory, light rays should be unaffected by a scalar gravita- 
tional field, as a consequence of the fact that null geodesics are given by 
the same equations in a flat space-time and a conformally flat space-time, 
which is used in the Nordstr6m theory. In addition, the perihelion rotation 
is also obtained incorrectly in this theory. 
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Thus, the Nordstr6m theory has since been only of academic interest, 
although even in 1953 Gfirsey (1953) pointed out that it could serve as a 
viable theory for cosmological models. This was recently confirmed in detail 
in a thesis (Mohammad, 1980) under the author's supervision, where it was 
shown that the Nordstr6m theory even restricts the possibilities of cosmo- 
logical models to two only, namely spatially flat (k = 0) and open universes 
(k = - 1 ) ,  the closed universe (k = +1) being ruled out. 

Still more recently, the author Mahanta (1984) and Villi (1985) have 
advocated the use of conformally flat space-time (which forms the back- 
ground of the Nordstr6m theory) for microscopic physics. Of course the 
motivations in the two cases are somewhat different. The second in fact 
uses the Einstein field equations, the solution of which is supposed to result 
in a conformally flat space-time, as happens, for instance, in the case of 
the Friedmann universe or in many other cases of perfect fluid solutions, 
where indeed the conformally flat space-time results from the Einstein field 
equations. But in Villi's case it is an assumption only. 

Coming to the author's recent work, which has been called "a dualistic 
approach to gravitation" because it deals with both the microscopic and 
macroscopic aspects of gravitation in a single framework, it is based on a 
variational formulation in which, in addition to the metric tensor go, another 
tensor pijkl with the symmetry properties of R ijkt plays an important role. 
But the equation determining the scalar function H for the conformally flat 
space-time is again the Nordstr6m (1913) equation. This suggests that 
possibility that the new approach is nothing but the Nordstr6m theory with 
certain additional field variables pOk~, which are needed to remove theoreti- 
cal shortcomings in the same, such as the absence of a variational principle. 

In this paper we shall address ourselves to a detailed clarification of 
this question and in passing make a few more points regarding the dualistic 
approach. 

2. IS NORDSTROM'S THEORY COMPLETE? 

The best way of looking at the Einstein and Nordstr6m theories from 
a common vantage point is to consider the following irreducible decomposi- 
tion of the Riemann tensor (Schild, 1962): 

'J - C ~ t +  'J 0 Rkl = Bkl+ Akl (1) 

Here R~l is the Riemann tensor and C~1 is the Weyl conformal tensor 
1 j i i " i " C~, R~,-~(6kQ,+ --- ~ ,O'~ - < , < )  ( 2 )  akQ~ 6JQ~)-~R(6Ja~ - 

QI ~ R~-�88 (3) 
l ~ i j  ~ l { ~ j  " i ' i " j i -akQ~t-6,Qk) (4) + a , O ' ~  ~ . . , -  _~,, ~ Q', 

i j _ _  1 j i i j Akt = ~R(  aka,-  6k6,) (5) 
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It is well known that B~ is essentially equivalent to the traceless tensor 
Qj and A[I to the scalar R. 

The Einstein theory can be derived by assigning 

Q~i -= R~ 1 j - ~ 6 i R  = k(  j ~- s T i - 4 t ~ i  T )  (6) 

where TSj is the energy-momentum tensor satisfying 

TSjo = 0 (7) 

and also 

R = - k T  (8) 
Equation (8) is implied by the consistency requirement for equation 

(6). For, if we write it as 

RS_~-.~so k T ~ - � 8 8  R)  (9) i 2t"i ~ 

then, taking the divergence of both sides, it follows that 

( k T  + R),i =0 

from which R = - k T ,  ignoring the cosmological constant. Equations (6) 
and (8) are together equivalent to the Einstein field equations 

R~ i s  - ~ 6 , R  = kT~ (10) 

On the other hand, for the Nordstrfm theory, we put 

C~,=O (11) 

and 

R = const x T (12) 

= ( 1 2 K / a ) T ,  say (13) 

(the reason for taking the constant in this form will be clear when we 
establish the link with the dualistic approach in the next section). 

Condition (11) implies a conformally flat space-time whose metric we 
shall take in the form 

as 2 = H2 rlq dx '  dx  j -~ H2[(dx~ 2 - (dx') 2 - (dx2) 2 - (dx3) 2] (14) 

H being a scalar function of the x i and r/0 is the Minkowski tensor. Then 
equation (13) is equivalent to 

R --- (6 /H  3) [] n = ( 1 2 K / a )  T (15) 

Equation (15) is the well-known Nordstrgm equation and 

02H 02H 02H 02H 
[S]H=-(oxO)~ (Oxl)2 (0x2)2-(0x3)2 (16) 
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Thus, to derive at the Einstein theory, we leave out C~ in the decompo- 
sition (1) from the field equations and to arrive at the NordstrOm theory 
we do the same for B~ or, equivalently, Qj. In both cases the agency 
responsible for the gravitational field is Tj or something derived from it, 
such as T--- TI. This is essential for the validity of the principle of equality 
of  inertial and gravitational masses of isolated systems. 

Now it is well known that the Einstein field equations (10) are also 
derivable from a variational principle. This was shown by Hilbert (1915), 
who arrived at equations (10) at almost the same time as Einstein (1915). 
A consequence of  this is that the conservation equations 

T ~ = 0  (17) 

follow from the field equations themselves, as can be seen by taking the 
divergence of  equation (10). This is considered to be a very attractive feature 
of the Einstein theory. But to date nobody has derived the NordstrOm field 
equations (11) and (12) from a variational principle and as a result the 
conservation equations (17) have to be independently postulated. But once 
this is done we can easily see by taking the partial derivative of equation 
(13) with respect to x i and using (17) and the identities 

(R~ -�89 = 0 (18) 

that 

( R j -lt~J R );j = - ( 1 2 K  / a ) (  T j - ~ T ) ; j  (19) 

(see also Appendix). 
Equation (19) suggests that even in the Nordstr/Sm theory there could 

be some kind of relationship between R~ and T~ as in the general theory 
of Einstein, even though the tensors B~I and A~t in (1) are algebraically 
independent and we left B~l out of the reckoning altogether in deriving the 
NordstrOm system (11), (12). If we set 

U~ - �88 R = - ( 1 2 K / a ) (  T~ - 1 ~  R )  (20) 

then this together with (13), namely R = ( 1 2 K / a ) T ,  will reduce to the 
Einstein system. This may be possible for a certain class of T~, but not in 
general, since equations (13) and (20) together represent ten equations (less 
four identities) for the determination of a single scalar function H. Thus 
the system is overdetermined in general. 

It is clear therefore that if we look for a relationship in the NordstrOm- 
type theory between R{ and T{, then in general there must be other unknowns 
present in it and for special values of these unknowns the system must 
reduce to the Einstein field equations in the form 

RJ _!~J  o = _ ( 1 2 K  / a ) TSi 
i 2 ~ i  l ' ~  
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It is also desirable that the new variables should play a role in rendering 
a variational formulation of the Nordstr6m theory possible. This program 
has been fully implemented in what has been called "a dualistic approach 
to gravitation" (Mahanta, 1984). In the next section we shall present a brief 
resume of the formalism from this new point of view. 

3. THE DUALISTIC APPROACH AS A SUPPLEMENTED 
NORDSTROM T H E O R Y  

The "ansatz" of the dualistic approach is the following variational 
principle: 

/ ,  

6 ] I ( - g )  ~/2 d 4 x = O  (21) 

with 

I -~ P~JkZ{Rok ~ -- (gjkd~ + gizdjk -- gikdjt -- gjldik)} 

+ K L +  ag~ (22) 

where g0 is the metric tensor, ROk~ is the curvature tensor, d 0 is another 
symmetric covariant tensor, pijkl is a fourth-rank tensor with the symmetry 
properties of R Okl with 20 algebraically independent components, L is the 
Lagrangian density of  nongravitationat fields, and a and K are constants. 

Variations of pijkl, do ' and go lead, respectively, to the following system 
of equations: 

ROk~ = gjkd~ + gizdjk -- g~kd~z -- gj~d~k (23) 

pO =- gktpikO = ( a / 4 ) g O  (24) 

pijkl __]wijk __l~[,.ljk dg Jk) = K T  jk (25) ;it I t  4 ~  u~ - -  

the constant K being redefined and 

~I Jk ~ diiP Ok(, d =- god O (20) 

Equation (23) shows that we have a conformally flat space-time (Eisenhart, 
1966) and 

d j k  - d g  Jk = �89 R jk - l g j k R  ) ( 2 7 )  

and 

The identities are 

d = R / 6  (28) 

DOkl 
- - ; i l  - -  r l j k )  ;k = 0 

( d J k _ d g i k ) ; k _ , ( ~ j k  ' M k o ~  

(29) 

(30) 
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in the derivation of which (23) is used. Taking the trace of equation (25), 
we get 

lad  = K T  (31) 

i.e., 

R = ( 1 2 K / a )  T (32) 

Thus, starting from a variational principle (21), we have been able to 
derive both sets of Nordstr6m's equations, namely (23) and (32), as a 
consequence of our field equations. We shall now derive (19) directly from 
the field equations (25) for p~jkt and show how for a specific choice of the 
P's the Einstein field equations result. For this we first write (25) in the form 

R { - � 8 9  = - ( 8 K / a ) { T { + ( 1 / K ) ( - P ~ ' , , + I I { ) }  (33) 

which can also be reduced to 

(RJk-�88 [TJk-lt$~kT+l(-P~i~+II~)]+lR~4 K " 1 (34) 

using equation (32). 
Taking the divergence of both sides and using (29) and 

( R{  --~Jk R ) j  = ~R k 

we get 

( gJk -- �88 e ),j = -- (12K / a )( TJk --�88162 T ) j  (35) 

The system will reduce to the Einstein system if we put in equation (33) 

p Ukt = ( a /12 ) ( g/kg ~ -- g ~k gj~ ) (36) 

A contraction shows pig = (a/4)g/k as required and 

IF k = d ,P  ijkt = - (  a /12) (  d jk - dg ik) 

= - ( a / 2 4 ) ( R  ~k - �89  3k) (37) 

Thus equation (33) reduces to 

R)k --�89 = - (  8 K / a) TJk --l( R2k -�89162 R ) 

i.e., 

R{ - ~JkR = - (12K / a) TJk (38) 

the Einstein field equations (for a conformally flat space-time). In other 
words, the condition that the NordstriSm theory is equivalent to the Einstein 
case is precisely given by equation (36). 
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Actually what occurs is the following. In the dualistic approach the 
conformally flat space-time is in a sense imposed on the microscopic world 
for any arbitrary T~. Mathematically this can be achieved with the help of 
an extra gauge field pUkl whose field equations turn out to be equation (25). 
Now it may happen that for a certain class of T~ the conformally flat 
space-time results from the Einstein field equations themselves (as in the 
case of many perfect fluid solutions in general relativity). In such a case 
the P-field is redundant and equation (36) is the condition for this. Rewriting 
(36) in the form 

c q k ,  ~ p i jk t  _ ( a / 1 2 ) ( g j k  git  _ g ikgjl)  = 0 (39) 

We may thus interpret C ukl as a measure of the deviation from the rep- 
resentation of a system by the Einstein field equations for a conformally 
flat space-time. This was the consideration that led the author to identify 
the above tensor in the averaged form with the conformal tensor of  Weyl 
for the macroscopic space-time resulting from averaging equations (33) 
over hadronic space-times (Mahanta, 1984). 2 

As regards the role of  the P-field in microscopic physics, obviously it 
is related to hadronic processes, but only a detailed investigation can reveal 
its precise physical meaning. But it is amply clear from the above discussion 
that the P-field fills a big gap in the theoretical structure of the Nordstr6m 
theory and seems to be the agent that generates the conformal part of  the 
macroscopic curvature tensor. 

APPENDIX 

The relation (19) is of course only one of  an entire class of similar 
relationships. To get this class we proceed as follows: 

We may write generally 

R i = - (1 /A){R~-  (1+ A)~R};j (A1) 

Ti = - ( l / p , ) (  T~ - /z6]  T)d (A2) 

Then, from R i =(12K/a)Ta  we get 

{R~-(~+A)6~R}j=(12K/a)(A/Iz)(T~-1~6~T)j  (A3) 

of which relation (19) is a special case with A = - ~  = - 1 / 4 .  

2The guiding idea in this is that although in the general case the system (23)-(26) differs from 
the Einstein system, when averaged over hadronic space-times it results in the Einstein 
equations of  general relativity. This is the transition from the microscopic system to the 
macroscopic system. 
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To derive (A3) directly from (33), we rewrite the latter as 

R~-(�89 A )6~R 

: - ~ [ ( r ~  ~a~r)+-~(-P~'.+IID] J 8K . - --ZOkR - - - l ,  zaJT 

Taking the divergence of both sides and using (29), (A1), (A2), and (32), 
we immediately get (A3). To arrive at the Einstein field equations, we first 
put 

R{- (�89 a )&~R = (12K/ a)(a /la,)( T { -  #a{ T) (A4) 

The trace equation will agree with the Nordstr6m equation if we take a = - / ,  
and then equation (A4) reduces to the Einstein equation. 
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